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Level spacings and periodic orbits
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Starting from a semiclassical quantization condition based on the trace formula, we derive a periodic-orbit
formula for the distribution of spacings of eigenvalues withk intermediate levels. Numerical tests verify the
validity of this representation for the nearest-neighbor level spacing (k50). In a second part, we present an
asymptotic evaluation for large spacings, where consistency with random matrix theory is achieved for largek.
We also discuss the relation with the method of Bogomolny and Keating@Phys. Rev. Lett.77, 1472~1996!# for
two-point correlations.
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The statistical distribution of quantum energy levels
conjectured to reflect the chaoticity or integrability of th
underlying classical dynamics@1,2#. For classically chaotic
systems one expects spectral distributions like those c
puted in random matrix theory~RMT! @2#, whereas for clas-
sically integrable systems the quantum levels appear to
low the distribution for a Poisson process@1#. Attempts to
explain this correspondence are based on Gutzwiller’s se
classical trace formula@3# which bridges the gap betwee
classical and quantum mechanics. The prime result in
direction is Berry’s analysis of the spectral rigidity@4#, based
on the so-called diagonal approximation and the class
sum rule of Hannay and Ozorio de Almeida@5#. Starting
from a semiclassical quantization condition@6,7#, Bogo-
molny and Keating@8# were able to extract information o
the two-point correlations going beyond the results of R
@4#. It is the aim of the present paper to follow a similar pa
in order to obtain semiclassical information on the lev
spacing distributions.

The Gutzwiller trace formula can be expressed as
periodic-orbit sum for the integrated density of statesN(E)
ª(nU(E2En),

NT~E!;N̄~E!1Re (
Tg<T

Age~ i /\!Sg~E!, ~1!

in the semiclassical limit, i.e., for\→0. N̄(E) denotes the
mean part following from Weyl’s law, whereas the fluctu
tionsNT

fl(E) are given by a sum over all periodic orbitsg of
the corresponding classical system. The action and perio
a periodic orbit are denoted bySg(E) and Tg(E), respec-
tively. The explicit form of the amplitudesAg can be found
in @3# for chaotic and in@9# for integrable systems. We hav
given a version truncated at periodsTg5T, which will be
needed in the following. Instead of directly using Eq.~1! to
express spectral functions, we will use an approximate sp
trum En(T) obtained from the condition@6,7#

NT~En~T!!5
!

n1 1
2 . ~2!
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Before investigating the statistical distribution we have
unfold the spectrum such that its mean densityd̄(E)
5dN̄(E)/dE is rescaled to unity. To this end, investigatin
spectral correlations in an intervalI (E;\)ª@E2\v,E
1\v#, we introduce the unfolded energiesxn(T)
ªEn(T)d̄, d̄ªd̄(E), see, e.g.,@10# for details. Spacings of
two unfolded energies withk intermediate levels are give
by sn(k;T)5xn1k11(T)2xn(T) and integrated level spacin
distributions are defined by

I ~k,s;T!ª
1

NI
(

EnPI ~E;\!
U~s2sn~k;T!!, ~3!

where NI denotes the number of eigenvalues contained
I (E;\). The often used level spacing densitiesP(k,s;T) are
the derivative ofI (k,s;T) with respect tos. Since the condi-
tion s>sn(k;T) can be rewritten asNT(En(T)1s/d̄)
2NT(En(T))>k, we can substitute the argument of the st
function. Upon replacing the sum by an integral overI (E;\)
with weight d(E8) which, in turn, we can asymptotically
substitute bydT(E8)ªdNT(E8)/dE8 we obtain

I ~k,s;T!;K UFNTS E81
s

d̄
D 2NT~E8!2k21G dT~E8!

d̄
L .

~4!

The brackets denote the energy averagê...&
ª(2\v)21*E2\v

E1\v ...dE8, due to which we may asymptoti

cally replacedT(E8)/d̄ by 1. Since the semiclassical lim
\→0 now impliesd̄→`, we haves/d̄!1, and expanding
the mean part ofNT aboutE yields the periodic-orbit formula

I ~k,s;T!;K US s2k211NT
flS E81

s

d̄
D 2NT

fl~E8!D L
~5!

for the integrated level spacing distribution. A similar expre
sion can be obtained for the level spacing distributi
P(k,s;T) itself by taking the derivative of Eq.~5!. Here we
again neglectdT

fl(E81s/d̄)/d̄ because of the energy averag
i.e.,
©2001 The American Physical Society01-1
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P~k,s;T!;K dF s2k211NT
flS E81

s

d̄
D 2NT

fl~E8!G L .

~6!

For the most intensively studied casek50, i.e., for
nearest-neighbor level spacings, we will now test these
mulas numerically for two toy models. Our first example is
classically integrable system, namely a rectangular quan
billiard with aspect ratio 2/(11A5) and Neumann boundar
conditions. For scaling systems the semiclassical limit\
→0 can be replaced by the high energy limitE→`, with a
suitable change in the energy average. For the plots we h
taken into account energies in the intervalEP@0,4000# ~cor-
responding to 214 eigenvalues!. Figure 1 shows the inte
grated level spacing distribution for this system where for
cutoff timeT we have chosenT5THª2p\d̄ ~dashed-dotted
line! and T550TH ~dashed line!, respectively. When in-
creasing the cutoff timeT we observe convergence towa
the quantum mechanical result~solid line!, which in turn in
the limit E→` converges to a Poissonian level spacing d
tribution ~dotted line!, cf. @11#.

For a second test we have chosen the imaginary par
the nontrivial zeros of the Riemann zeta function. The
serve as a model for quantum chaos, since their spectral
relations are well described by the Gaussian unitary
semble~GUE!, see, e.g.,@12# and references therein. Th
density of the Riemann zeros is related to a sum over prim
see, e.g.,@13#, in a similar way as the density of states of
quantum system is related to a sum over periodic orbits
the corresponding classical system Eq.~1!.

In Fig. 2 the integrated level spacing distribution of t
first 649 Riemann zeros with imaginary parts between 0
1000~solid line! is shown as well as the analogue of Eq.~5!
~dashed line! with a truncation of the sum over primes at th
Riemann–Siegel cutoff@14# which corresponds toTH/2 @15#.
We observe a good agreement of both curves for largs

FIG. 1. Integrated level spacing distribution from periodic orb
Eq. ~5! for a rectangular billiard with cutoff time 50TH ~dashed! and
TH ~dashed-dotted!. The quantum mechanical level spacing dist
bution ~solid! and the graph for a Poisson process~dotted! are
shown for comparison.
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where both approach the GUE result~dotted line!. However,
for values ofs below 1 the periodic-orbit formula differs
from both the GUE and the exact curve. This is due to
fact that the periodic orbit sum Eq.~1!, truncated at the orde
of the Heisenberg time, cannot reproduce features below
scale of mean level spacing. Unlike in the integrable case
using a sharp cutoff we cannot simply increaseT since now
the sum over primes numerically behaves like an asympt
cally divergent series, i.e., including, e.g., orbits up to t
Heisenberg time yields worse results. One could poss
overcome this drawback by using a smoothed and thus c
vergent trace formula, see@16#. We will not further pursue
this approach since it requires a much larger number of or
~in Fig. 2 only primes up to 13 are needed!, which for typical
systems are not available. Instead for later reference we
remark that any cutoff, either sharp as above or the effec
cutoff in a smoothed trace formula, has to be a multiple
the Heisenberg time.

Now that we have checked the periodic orbit formula n
merically, we turn to an asymptotic evaluation ofP(k,s;T)
for generic quantum systems with chaotic classical limit.
well established conjecture on global eigenvalue statis
@17# states that~after suitable normalization! in the semiclas-
sical limit the value distribution ofNT

fl is given by a Gaussian
with zero mean. In analogy to@8# we also assume Gaussia
behavior for the differenceNT

fl(E81s/d̄)2NT
fl(E8). Al-

though this assumption leads to the correct result in the c
of two-point correlations@8,18#, we remark that it corre-
sponds to neglecting cross correlations betweenNT

fl at differ-
ent arguments which, especially for smalls, will become
important. Thus, in the limits→`, s/d̄→0, the energy av-
erage in Eq.~6! can be performed approximately, yielding

P~k,s;T!'
1

A2ps2
expS 2

~s2k21!2

2s2 D , ~7!

FIG. 2. Integrated level spacing distribution for the zeros of
Riemann zeta function~solid! and the spacing distribution calcu
lated from prime numbers~dashed!, cf. Eq.~5!, T5TH/2. The spac-
ing distribution of the GUE~dotted! and for a Poisson proces
~dashed-dotted! are shown for comparison.
1-2
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where the ~s-dependent! variance s2
ª^(NT

fl(E81s/d̄)
2NT

fl(E8))2& of the Gaussian is still to be determined. Th
last step can be done by substituting the trace formula Eq~1!

for NT
fl and employing an expansion ins/d̄ ~see@18#!

s2;K S Re (
Tg<T

Age~ i /\!Sg~e~ i /\!Tg~s/d̄!21! D 2L . ~8!

Sinces/d̄→0 the only rapidly oscillating terms in the doub
sum involve only the actionsSg . Thus, following the genera
idea of the diagonal approximation@5,4#, in the limit we only
keep terms with identical actions, resulting in

s2'g (
Tg<T

uAgu2F12cosS sTg

\d̄
D G , ~9!

whereg denotes the generic multiplicity of orbits sharing t
same action, see@4,10#. Using the classical sum rule@5# we
obtain

s2'
g

p2 E0

T 12cos~sT8/\d̄!

T8
dT8;

g

p2 F logS sT

\d̄
D 1gG ,

~10!

g denoting Euler’s constant. We remark that the sublead
term of this expansion is not unique at this point, since i
influenced by corrections to the sum rule~which unfortu-
nately are unknown! as well as by the choice of the cuto
time. Therefore, when now settingT5CTH5C2p\d̄ we
obtain

s2'
g

p2 ~ logs1a!. ~11!

Herea is kept as a free parameter which, however, will n
influence the large-s asymptotics. Upon substituting Eq.~11!
into Eq. ~7! we obtain a semiclassical formula for the lev
spacing distributions ass→`

Psc~k,s!'A p/~2g!

logs1a
expS 2

p2~s2k21!2

2g~ logs1a! D . ~12!

Since Eq.~12! is mainly supported arounds'k11 we may
for a moment substitute logs by log(k11) for largek. The
formula obtained that way is consistent with a conjecture
P(k,s) from RMT @19#, see also@20#, which can be adopted
to generic quantum systems with chaotic classical limit@21#.
However for smallk and in particular for nearest-neighbo
level spacings Eq.~12! fails to reproduce the RMT results
This has to be understood in the following sense: T
asymptotic techniques used are essentially restricted to
point correlations. Since the mean distance betweenxn1k11
andxn is given byk11, theP(k,s) can only be dominated
by two-point correlations on scales wheres'k11. More
precisely, in Eq.~6! one can easily see that assuming
02720
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Gaussian distribution with zero mean forNT
fl(E81s/d̄)

2NT
fl(E8) links s and k. Thus an asymptotic evaluation a

s→` also implies largek.
We will now investigate the relation of our result Eq.~12!

with the method of Bogomolny and Keating for the tw
point correlation functionR2(s), which can be represente
as the sum

R2~s!ª(
k50

`

P~k,s!21. ~13!

Substituting Eq.~12! for the level spacing distributions an
applying the Poisson summation formula yields

R2,sc~s!' (
nPZ\$0%

1

2
exp~22p2n2s2!exp~2p ins!

3F11erfS s2112p ins2

&s
D G , ~14!

wheres2 is given by Eq.~11!. The leading terms ass→`
derive from n561 ~as can be easily seen from the fir
exponential!, i.e.,

R2,sc~s!'2e22ga
cos~2ps!

s2g . ~15!

Comparing with the large-s asymptotics of two-point corre
lation functions of RMT we observe that we have obtain
the leading oscillatory contribution, which can be expec
from the method of Bogomolny and Keating@8,18#, but are
missing the term which corresponds to the diagonal appr
mation of the spectral form factor~see@4,8,22#!. The reason
for this is that between Eqs.~4! and ~6! we have neglected
the termdT

fl(E8)dT
fl(E81s/d̄)/d̄2, which there was consis

tent, since it can be determined that doing so neither affe
the numerics nor changes the large-s asymptotics of Eq.~12!.
However, in the sum Eq.~13! the diagonal approximation o
this term yields the missing term ofR2(s).

In this sense our result for the level spacing distributio
~for large k! is in leading order consistent with RMT two
point correlations. Thus, we can now compare Eq.~15! to the
respective results from RMT, in order to fixa. For systems
without time-reversal symmetry (g51) we have to compare
them with the GUE result, see, e.g.,@23#, thus obtaininga
5 log(2p). Analogously for time reversal invariant system
(g52) we obtaina5 log(&p) by comparing with two-point
correlations of the Gaussian orthogonal ensemble. Thus,
the substitution logs'log(k11) for largek we have obtained
Gaussians for theP(k,s) with approximate variances

s2~k!'
g

p2 ~ log~k11!1a!,

which is consistent with expectations from RMT@19,20# and
numerical observations for classically chaotic systems@21#.

We briefly remark that the reasoning easily carries ove
the third universality class, the Gaussian symplectic
1-3
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semble. To this end we have to consider trace formulas
particles with half integer spin@24,25#. For time reversal
invariant systems one has to take into account Kramers’
generacy as in@18#. Again using the Gaussian ansatz Eq.~7!
and methods of@10# for the calculation ofs2 we obtain

Pspin~k,s!'A p

logs1a
expS 2

p2~s2k21!2

logs1a D , ~16!

where the same procedure as above yieldsa5 log 8.
Summarizing, we have derived periodic orbit formulas

the level spacing distributionsP(k,s) andI (k,s). Numerical
tests show that using purely classical input even the nea
et

ev

n
n
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neighbor spacing distribution can be obtained for both cl
sically integrable and chaotic systems, where in the la
case with present techniques we cannot go below the sca
mean level spacing. In a second part we have presente
asymptotic evaluation of the formulas for large spacin
which yields good approximations, if we restrict ourselves
the case of largek.
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